Introduction To Factorial Designs and Interactions

PSYC214: Statistics For Group Comparisons

Mark Hurlstone Lancaster University

Week 6

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Learning Objectives

- Introduction to factorial designs
 - two-factor designs
- Outcomes of factorial designs
 - main effects
 - simple main effects
 - interaction
- Why do we need factorial designs?
- Planning factorial designs
- Analysing factorial designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Beyond Single Factor Designs

• The single factor design forms a minority in psychology:

- too simple to address complex questions
- can give a false impression of importance of a factor
- In a factorial design, two or more factors are varied simultaneously:
 - common in cognitive and social psychology
 - can address more complicated research questions
 - can identify interactions between factors
- Couldn't we just use multiple t-tests?
 - inflation of familywise Type I error rate

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Language of Factorial Designs

- A factorial design is referenced by the number of its factors (e.g., two-factor design, three-factor design etc.)
- Factors are referenced by name (e.g., A, B)
- Levels of a factor are referenced by subscripts (e.g., A₁, A₂, B₁, B₂)
- A design with two-factors, each with two levels, is described as a 2 × 2 (read as "two-by-two") factorial design
- The total number of treatment conditions is calculated by multiplying the levels of each factor

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Language of Factorial Designs

- Fully between-participants factorial design:
 - a design containing factors that are all manipulated between-participants
- Fully within-participants factorial design:
 - a design containing factors that are all manipulated within-participants
- Mixed factorial design:
 - a design containing a mixture of factors that are manipulated between- or within-participants

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Example: Fear Appeals and COVID-19 Vaccination Intentions

- Does exposure to a "fear appeal" increase people's intention to get vaccinated against COVID-19?
- Does exposure to a "self-efficacy" message increase people's intention to get vaccinated against COVID-19?
- A 2 × 2 fully between-participants design:
 - 1 Fear: no fear appeal vs. fear appeal
 - 2 Efficacy: no efficacy message vs. efficacy message
- One dependent variable:
 - Likelihood of vaccinating against COVID-19: 0 (Very Unlikely) to 10 (Very Likely)

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

A 2 \times 2 Factorial Design

Table: A 2 \times 2 factorial design

		Factor A: Fear		
		Level A ₁	Level A ₂	
		no fear appeal	fear appeal	
Factor <i>B</i> :	Level <i>B</i> ₁ no efficacy message	Vaccination intention scores for a group of participants who re- ceived no fear appeal and no efficacy mes- sage	••	
Efficacy	Level B ₂ efficacy message	Vaccination intention scores for a group of participants who re- ceived no fear appeal but did receive an effi- cacy message	Vaccination intention scores for a group of participants who received both a fear appeal and an efficacy message	

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

A 2 \times 2 Factorial Design

Table: A 2 \times 2 factorial design

		Factor A: Fear		
		Level A ₁	Level A ₂	
		no fear appeal	fear appeal	
Factor B:	Level B ₁ no efficacy message	Mean A_1B_1	Mean A_2B_1	Mean B ₁
Efficacy	Level B ₂ efficacy message	Mean A_1B_2	Mean A_2B_2	Mean B ₂
		Mean A ₁	Mean A ₂	Grand Mean

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

A 2 \times 2 Factorial Design

Table: A 2 \times 2 factorial design

		Factor A: Fear		Outcomes of Factorial Designs
		Level A ₁	Level A ₂	Main Effects Simple Main Effects Interaction
		no fear appeal	fear appeal	Why Factoria Designs?
Factor B:	Level B ₁ no efficacy message	1/4 of participants	1/4 of participants	0
Efficacy	Level B ₂ efficacy message	1/4 of participants	1/4 of participants	Planning Factorial Designs
				Analysing Factorial Designs
				References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▼

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Factors Can Have More Than Two Levels

- There is no limit on the number of levels in a factor
- Suppose we want to know if the amount of fear depicted in the fear appeal matters
- We could adopt a 3 × 2 fully between-participants design:
 - 1 Fear: low fear vs. medium fear vs. high fear
 - 2 Efficacy: no efficacy message vs. efficacy message
- As before, we measure likelihood of vaccinating against COVID-19 on a 0 (Very Unlikely) to 10 (Very Likely) scale

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

A 3 \times 2 Factorial Design

Table: A 3 \times 2 factorial design

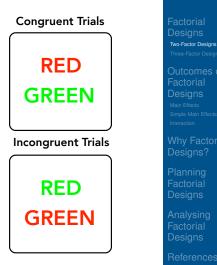
		Factor A: Fear			
		Level A ₁	Level A ₂	Level A ₃	
		low fear	medium fear	high fear	
Factor B:	Level B ₁ no efficacy message	Mean A_1B_1	Mean A_2B_1	Mean A_3B_1	Mean B ₁
Efficacy	Level B ₂ efficacy message	Mean A_1B_2	Mean A_2B_2	Mean A_3B_2	Mean B ₂
		Mean A ₁	Mean A ₂	Mean A ₃	Grand Mean

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction


Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Examples of Fully Within-Participants and Mixed Designs

- In the Stroop task, participants name the ink colour of a colour word as quickly as possible:
 - on congruent trials, the ink colour and colour name are consistent
 - on incongruent trials, the ink colour and colour name are inconsistent
- Stroop effect = longer RTs for incongruent, compared to congruent, trials
- A measure of response inhibition

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Example of A Fully Within-Participants Design

- A researcher wants to know if the size of the Stroop effect decreases with practice
- She employs a 2 × 3 fully within-participants design:
 - trial type: congruent vs. incongruent
 - trial block: 1 vs. 2 vs. 3
- Making *trial type* within-participants means we can establish each participant's susceptibility to the Stroop effect
- *trial block* must be a within-participants factor, as it requires experience with the task
- There are 2 × 3 = 6 conditions; a single group of participants completes each condition

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Example of A Mixed Design

- A researcher wants to know if response inhibition is impaired in patients with Schizophrenia using the Stroop task
- She employs a 2 × 2 mixed design:
 - trial type: congruent vs. incongruent
 - patient group: healthy vs. Schizophrenia
- trial type is once again a within-participants factor
- patient group must be a between-participants factor
- There are 2 × 2 = 4 conditions; two groups of participants (healthy vs. Schizophrenia) each complete two conditions of the experiment (congruent vs. incongruent trials)

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Outcomes of Factorial Designs

- In a factorial experiment, various different outcomes are possible:
 - main effects
 - simple main effects
 - interaction

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs

Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Outcomes of Factorial Designs: Main Effects

- The simplest outcomes are the main effects
- They represent the overall difference in means of one factor, ignoring the other(s)
- If people given a fear appeal have higher vaccination intentions than those that weren't overall, there is a *significant main effect of fear*
- If people given a self-efficacy message have higher vaccination intentions than those that weren't overall, there is a *significant main effect of efficacy*

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

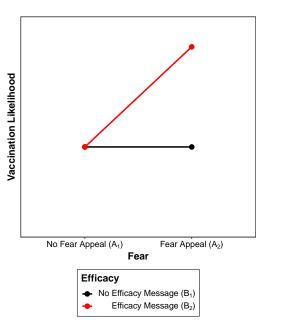
Hypothetical Data Table

Table: A 2 \times 2 factorial design

		Factor A		
		Level A ₁	Level A ₂	
		no fear appeal	fear appeal	Mean
Factor B:	Level B ₁ no efficacy message	4	4	4
Efficacy	Level B ₂ efficacy message	4	9	6.5
	Mean	4	6.5	5.25

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

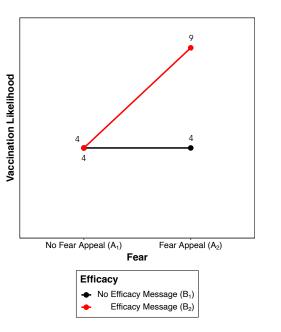
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

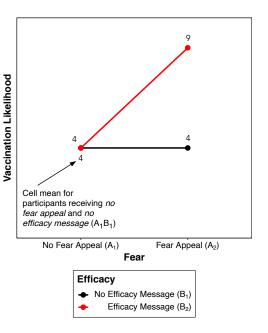
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

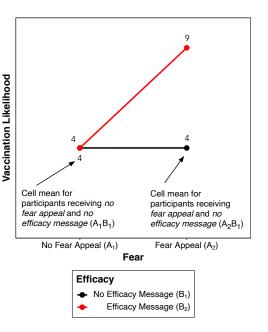
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

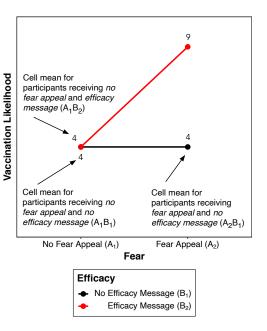
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

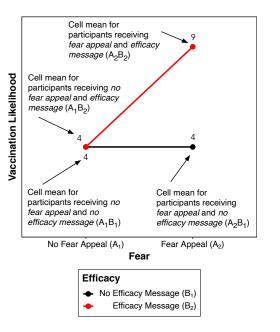
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

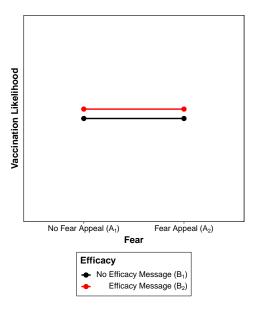
Possible Outcomes For Main Effects

- In a two-factor design, there are three possible outcomes in terms of the main effects:
 - 1 no significant main effects
 - 2 one significant main effect
 - 3 two significant main effects

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs


Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

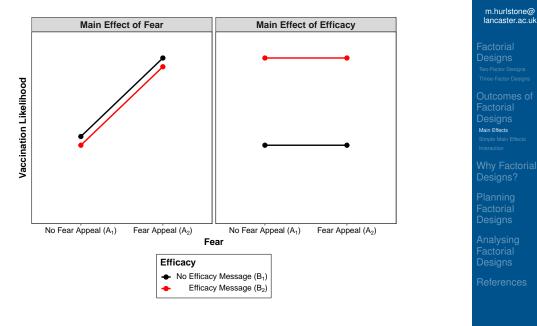
Analysing Factorial Designs

1. No Significant Main Effects

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

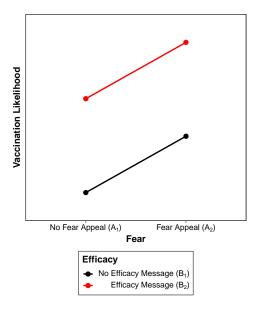

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

2. One Significant Main Effect



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

PSYC214

Statistics for Group Comparisons

3. Two Significant Main Effects

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

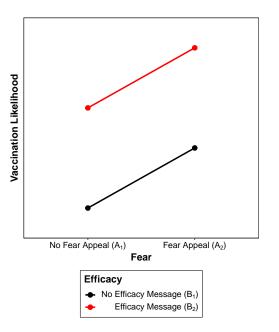
References

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

- Simple main effects break down main effects into their component parts:
 - simple main effect of factor A (no fear appeal vs. fear appeal) at level B₁ (no efficacy message) of factor B
 - 2 simple main effect of factor A (no fear appeal vs. fear appeal) at level B₂ (efficacy message) of factor B
 - Simple main effect of factor B (no efficacy message vs. efficacy message) at level A₁ (no fear appeal) of factor A
 - simple main effect of factor B (no efficacy message vs. efficacy message) at level A₂ (fear appeal) of factor A
- Let's look at these effects visually ...

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

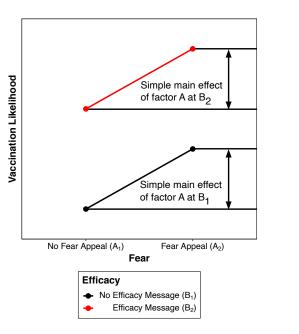
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

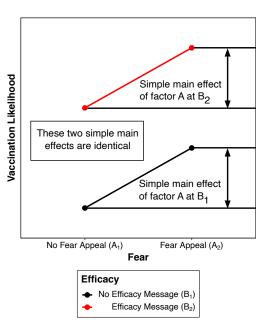
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

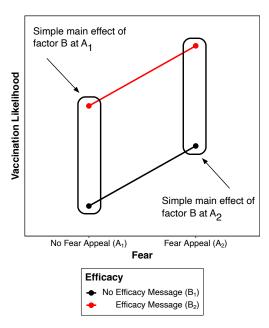
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

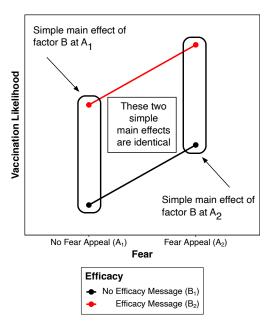
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

- In the preceding example, the two factors had independent effects on the dependent measure
- The two simple effects for each factor were identical to the overall main effect from which they were obtained:
 - Vaccination intention scores were higher with vs. without a fear appeal, regardless of whether or not participants received an efficacy message
 - Vaccination intention scores were higher with vs. without an efficacy message, regardless of whether or not participants received a fear appeal

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

- Sometimes the simple main effects of one factor will be different at different levels of the second factor
- In other words, the way one factor is related to the dependent variable may depend on the level of the second factor
- When this happens, we have an interaction
- When there is an interaction, you cannot interpret the results in terms of the main effects
- Instead, you must determine how the factors are combining to influence the dependent variable by looking at the simple main effects

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

- You may now have realised that the hypothetical data presented earlier are an example of an interaction
- Let's revisit those data ...

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

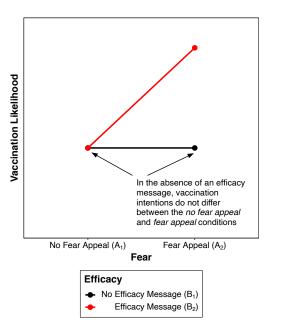
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

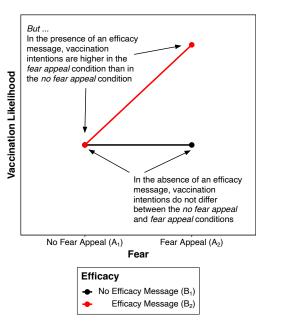
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

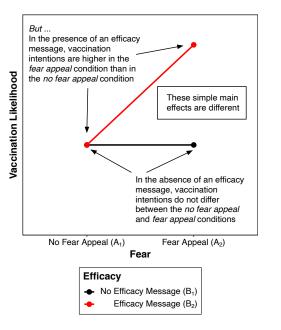
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

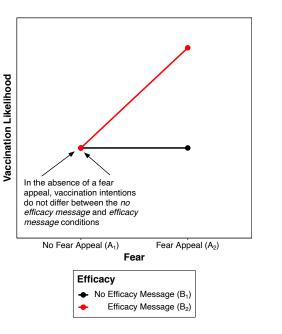
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

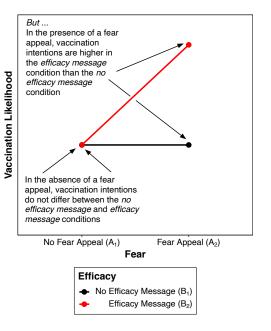
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

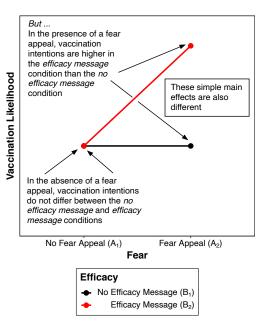
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

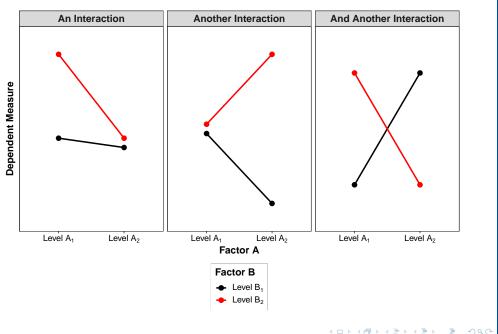
Analysing Factorial Designs

How To Spot An Interaction

- If a line plot of the data (also known as an interaction plot) has non-parallel lines, then this is indicative of the presence of an interaction
- This is the case for the hypothetical data we just considered
- Here are some additional examples ...

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs


Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Examples of Interactions: All Have Non-Parallel Lines

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

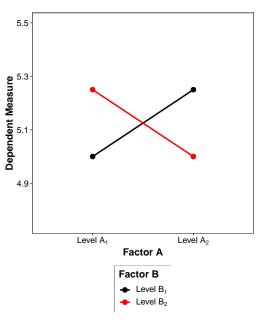
Analysing Factorial Designs

How To Spot An Interaction

- When inspecting interaction plots, check the scale limits on the y-axis
- A tightly compressed scale can create the "illusion of an interaction"

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

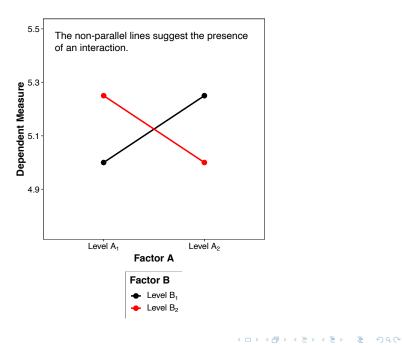
Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction


Why Factorial Designs?

Planning Factorial Designs

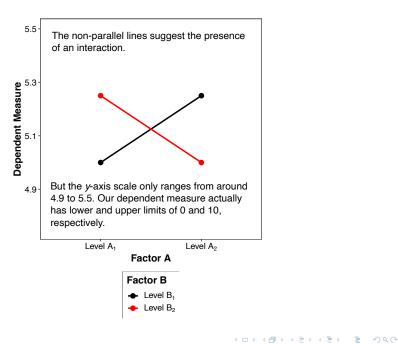
Analysing Factorial Designs

References

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

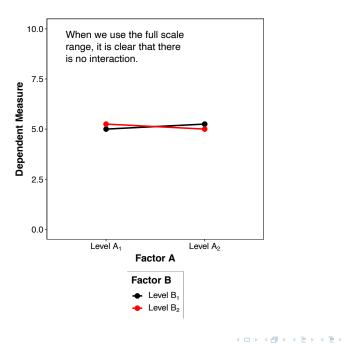
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

32

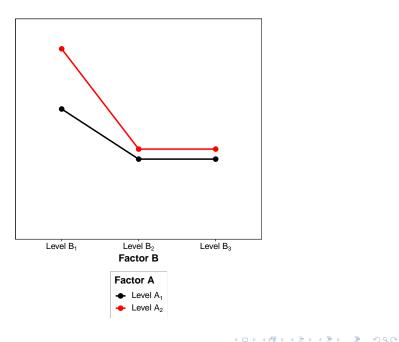
- Remember, if there is a significant interaction we must examine the simple main effects
- Keep in mind that sets of simple main effects are independent:
 - some simple main effects of one factor may be significant and others not
 - ... but this does not mean that some simple main effects of the other factor will also be significant and others not
- Here's an example using a 2 \times 3 design ...

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction


Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

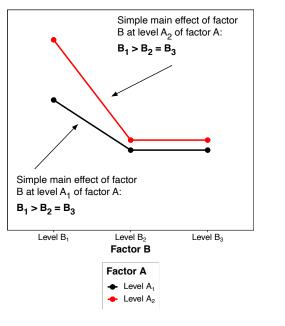
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

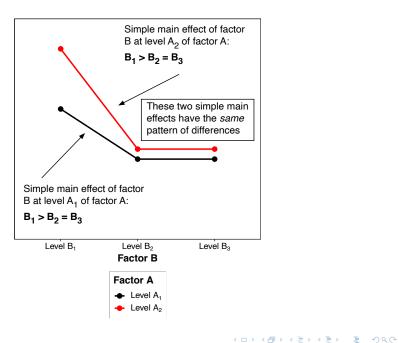
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

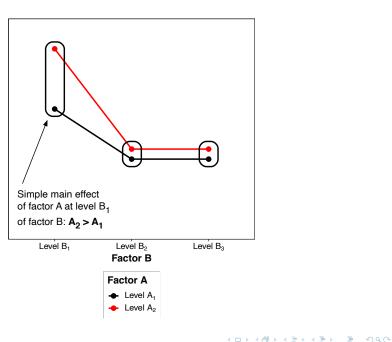
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

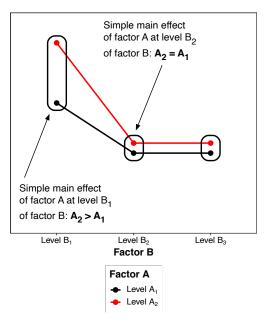
Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk


Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

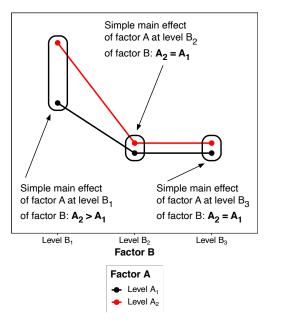
Planning Factorial Designs

Analysing Factorial Designs

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs


Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

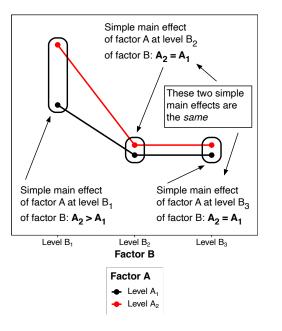
References

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction


Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

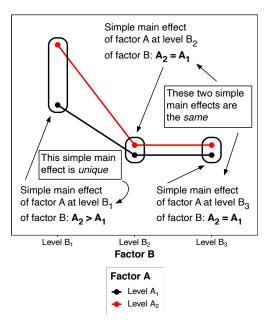
▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction


Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

References

▲□▶▲御▶▲臣▶★臣▶ 臣 のへで

Why Factorial Designs?

- The effect of a factor in a single-factor design can be misleading and conceal a potential interaction
- If we just compare COVID-19 vaccination intentions in the absence and presence of a fear appeal, we would conclude the fear appeal has no effect
- We would dismiss as ineffective the use of fear-based messages to increase COVID-19 vaccination rates
- However, we know from our factorial experiment example that this result is misleading—fear appeals work when combined with a self-efficacy message

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Why Factorial Designs?

- In PSYC204 (Week 4), we considered the TV viewing habits of children and their future High-School grades
- When viewing habits are ignored, time watching TV (small vs. large amount) as a child has no effect on grades
- · When viewing habits are factored into account, there is an interaction:
 - for educational content, High-School grades increase with time watching TV
 - for noneducational content, High-School grades decrease with time watching TV
- In both of these examples, a factorial design was required to reach an appropriate conclusion

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Planning Factorial Designs

- Fully between-participants designs are generally easier to interpret but require more participants
- Make sure you have adequate sample size per cell (\approx 20) to protect against Type II errors
- There are tradeoffs between the complexity of a design, how practical it is to run, and the interpretability of its results
- Try to avoid designing studies with more than three factors
- Ideally, no factor should have more than two levels

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Analysing Factorial Designs

- We cannot know for certain from "eyeballing" our data what outcomes are significant or not
- A factorial ANOVA produces an *F*-ratio and *p* value for each main effect and interaction
- In a two-factor design, this means:
 - an F-ratio and p value for the main effect of factor A
 - an F-ratio and p value for the main effect of factor B
 - an *F*-ratio and *p* value for the $A \times B$ interaction
- Each simple main effect also has an *F*-ratio and *p* value, but we only generate these if the interaction is significant
- Follow up tests will be required for simple main effects with three or more levels

PSYC214: Statistics for Group Comparisons

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

In Next Week's Lab ...

- Producing line plots and bar graphs for factorial studies
- Interpreting simple main effects

m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs

Roberts, M. J., & Russo, R. (1999, Chapter 8). A student's guide to Analysis of Variance. Routledge: London.

PSYC214: Statistics for Group Comparisons

> m.hurlstone@ lancaster.ac.uk

Factorial Designs Two-Factor Designs Three-Factor Designs

Outcomes of Factorial Designs Main Effects Simple Main Effects Interaction

Why Factorial Designs?

Planning Factorial Designs

Analysing Factorial Designs